大一高数求解
展开全部
z=[cos(x+y)]^(siny)
注:因为求的是z'x,故把y看做常数,从而siny也是常数
【相当于z=u^a,而u=g(x,y),故z'x=u^a · ln|u|· u'x】
故z'x=[cos(x+y)]^(siny) · ln|cos(x+y)| · [-sin(x+y)]·1
=-sin(x+y)[cos(x+y)]^(siny) ln|cos(x+y)|
故z'x (x,π/2)=-sin(x+π/2)[cos(x+π/2)]^[sin(π/2)] ln|cos(x+π/2)|
=-cosx (-sinx)^1 · ln|-sinx|
=sinx cosx ln|sinx|
注:因为求的是z'x,故把y看做常数,从而siny也是常数
【相当于z=u^a,而u=g(x,y),故z'x=u^a · ln|u|· u'x】
故z'x=[cos(x+y)]^(siny) · ln|cos(x+y)| · [-sin(x+y)]·1
=-sin(x+y)[cos(x+y)]^(siny) ln|cos(x+y)|
故z'x (x,π/2)=-sin(x+π/2)[cos(x+π/2)]^[sin(π/2)] ln|cos(x+π/2)|
=-cosx (-sinx)^1 · ln|-sinx|
=sinx cosx ln|sinx|
展开全部
两边取对数,然后求导,lnz=siny*ln(cos(x+y))
z'/z=siny*-sin(x+y)/cos(x+y)
带入y=π/2
得出:z'/z=-sin(x+π/2)/cos(x+π/2)
z'=z*cos(x)/sin(x)=z*cot(x)
z'/z=siny*-sin(x+y)/cos(x+y)
带入y=π/2
得出:z'/z=-sin(x+π/2)/cos(x+π/2)
z'=z*cos(x)/sin(x)=z*cot(x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询