1个回答
展开全部
4∫(-π/2->π/2) (cosx)^4 dx
=8∫(0->π/2) (cosx)^4 dx
=2∫(0->π/2) (1+cos2x)^2 dx
=2∫(0->π/2) [1+2cos2x +(cos2x)^2 ] dx
=∫(0->π/2) [3+4cos2x +cos4x ] dx
= [ 3x +2sin2x +(1/4)sin4x] |(0->π/2)
=3π/2
=8∫(0->π/2) (cosx)^4 dx
=2∫(0->π/2) (1+cos2x)^2 dx
=2∫(0->π/2) [1+2cos2x +(cos2x)^2 ] dx
=∫(0->π/2) [3+4cos2x +cos4x ] dx
= [ 3x +2sin2x +(1/4)sin4x] |(0->π/2)
=3π/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询