1²+2²+3²+……+n²=n(n+1)(2n+1)/6,这个怎么证明,简单过程清晰一点,谢谢
2个回答
展开全部
an
= n^2
=n(n+1) - n
=(1/3)[ n(n+1)(n+2) -(n-1)n(n+1)] - (1/2)[n(n+1) - (n-1)n]
a1+a2+...+an
=(1/3)n(n+1)(n+2) -(1/2)n(n+1)
=(1/6)n(n+1)( 2(n+2) - 3)
=(1/6)n(n+1)( 2n+1)
= n^2
=n(n+1) - n
=(1/3)[ n(n+1)(n+2) -(n-1)n(n+1)] - (1/2)[n(n+1) - (n-1)n]
a1+a2+...+an
=(1/3)n(n+1)(n+2) -(1/2)n(n+1)
=(1/6)n(n+1)( 2(n+2) - 3)
=(1/6)n(n+1)( 2n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
平方和的推导利用立方公式:
(n+1)³-n³=3n²+3n+1 ①
记Sn=1²+2²+....+n², Tn=1+2+..+n=n(n+1)/2
对①式从1~n求和,得:
∑(n+1)³-n³=3∑n²+3∑n+∑1
(n+1)³-1=3Sn+3Tn+n
这就得到了Sn=n(n+1)(2n+1)/6
举一反三,这个办法可以依次用来得到高次数列的求和通式。
(n+1)³-n³=3n²+3n+1 ①
记Sn=1²+2²+....+n², Tn=1+2+..+n=n(n+1)/2
对①式从1~n求和,得:
∑(n+1)³-n³=3∑n²+3∑n+∑1
(n+1)³-1=3Sn+3Tn+n
这就得到了Sn=n(n+1)(2n+1)/6
举一反三,这个办法可以依次用来得到高次数列的求和通式。
更多追问追答
追问
对①式从1~n求和,得:
∑(n+1)³-n³=3∑n²+3∑n+∑1,这个不太明白
1式中,1~n求和的意思是当n=1,2,3,,,,n的和吗
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |