设函数f(x)在闭区间[a,b]上连续,且其值域包含于[a,b],证明f(x)在闭区间[a,b]上?
1个回答
展开全部
设t=(2ⅹ²+ax+b)/(x²+1),则
(t-2)x-ax+t-b=0.
判别式△≥0,故
(-a)²-4(t-2)(t-b)≥0,
即4t²-4(b+2)t+8b-a²≤0 ··· ···①
而f(x)=t∈[1,3],
∴(t-1)(t-3)≤0,
即t²-4t+3≤0 ··· ···②
显然①、②为同解不等式,
即各项系数成比例,故
4:1=4(b+2):4=(8b-a²):3.
解得,a=±2,b=2。
(t-2)x-ax+t-b=0.
判别式△≥0,故
(-a)²-4(t-2)(t-b)≥0,
即4t²-4(b+2)t+8b-a²≤0 ··· ···①
而f(x)=t∈[1,3],
∴(t-1)(t-3)≤0,
即t²-4t+3≤0 ··· ···②
显然①、②为同解不等式,
即各项系数成比例,故
4:1=4(b+2):4=(8b-a²):3.
解得,a=±2,b=2。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询