线性代数A和A的转置行列式的所有关系
展开全部
相等的,因为行列式最后是经过变换得到的,最后是用对角线上的乘积,A的行变换和A转置矩阵的列变换得到的对角线是一样的值。
证明如下:
假定A(T)A做了一个特征分解,为:A(T)A = QΣQ(T)
对上式取转置,有AA(T) = QΣ(T)Q(T)
显然,Σ是个对角阵,因而,Σ(T) = Σ
故而,AA(T)和A(T)A有完全一致的特征分解,即共特征值。
性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
亚远景信息科技
2024-12-11 广告
2024-12-11 广告
上海亚远景信息科技有限公司是国内汽车行业咨询及评估领军机构之一,深耕于ASPICE、敏捷SPICE、ISO26262功能安全、ISO21434车辆网络安全领域,拥有20年以上的行业经验,专精于培训、咨询及评估服务,广受全球车厂及供应商赞誉,...
点击进入详情页
本回答由亚远景信息科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询