1的不定积分等于多少
1个回答
展开全部
1的不定积分等于:x+C。(C为积分常数,x为自变量)
解答过程如下:
∫
1=x+C。
不定积分和求导是互逆的,对x+C求导得1,于是1的不定积分就是x+C。
扩展资料:
分部积分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
两边积分得:∫
u'v
dx=∫
(uv)'
dx
-
∫
uv'
dx
即:∫
u'v
dx
=
uv
-
∫
uv'
d,这就是分部积分公式
也可简写为:∫
v
du
=
uv
-
∫
u
dv
常用积分公式:
1、∫
a
dx
=
ax
+
C,a和C都是常数
2、∫
x^a
dx
=
[x^(a
+
1)]/(a
+
1)
+
C,其中a为常数且
a
≠
-1
3、∫
1/x
dx
=
ln|x|
+
C
4、∫
a^x
dx
=
(1/lna)a^x
+
C,其中a
>
0
且
a
≠
1
5、∫
e^x
dx
=
e^x
+
C
6、∫
cosx
dx
=
sinx
+
C
7、∫
sinx
dx
=
-
cosx
+
C
解答过程如下:
∫
1=x+C。
不定积分和求导是互逆的,对x+C求导得1,于是1的不定积分就是x+C。
扩展资料:
分部积分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
两边积分得:∫
u'v
dx=∫
(uv)'
dx
-
∫
uv'
dx
即:∫
u'v
dx
=
uv
-
∫
uv'
d,这就是分部积分公式
也可简写为:∫
v
du
=
uv
-
∫
u
dv
常用积分公式:
1、∫
a
dx
=
ax
+
C,a和C都是常数
2、∫
x^a
dx
=
[x^(a
+
1)]/(a
+
1)
+
C,其中a为常数且
a
≠
-1
3、∫
1/x
dx
=
ln|x|
+
C
4、∫
a^x
dx
=
(1/lna)a^x
+
C,其中a
>
0
且
a
≠
1
5、∫
e^x
dx
=
e^x
+
C
6、∫
cosx
dx
=
sinx
+
C
7、∫
sinx
dx
=
-
cosx
+
C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询