谁知道拉格朗日中值定理如何证明不等式和恒等式?谢谢了
2个回答
展开全部
你好,关于拉格朗日恒等式的证明如下:
用数学归纳法证明.
1.
显然n=1时,[(a1)^2][(b1)^2]=[(a1)(b1)]^2.
拉格朗日恒等式成立.
2.
设n=k时,拉格朗日恒等式成立.
当n=k+1时,
[(a1)^2+...+(a(n+1))^2][(b1)^2+...+(b(n+1))^2]-
-[(a1)(b1)+...+(a(n+1))(b(n+1))]^2=
={[(a1)^2+...+(an)^2][(b1)^2+...+(bn)^2]-
-[(a1)(b1)+...+(an)(bn)]^2}+
+{[(a(n+1))^2(b1)^2+(b(n+1))^2(a1)^2]+..+
+[(a(n+1))^2(bn)^2+(b(n+1))^2(an)^2]-
-2a(n+1)b(n+1)[(a1)(b1)+...+(an)(bn)]}=
={[(a2)(b1)-(a1)(b2)]^2+[(a3)(b1)-(a1)(b3)]^2+..+
+[(a(n-1))(bn)-(an)(b(n-1))]^2}+
+{[(a(n+1))^2(b1)^2-2a(n+1)b(n+1)(a1)(b1)+
+(b(n+1))^2(a1)^2]+..+[(a(n+1))^2(bn)^2-
-2a(n+1)b(n+1)(an)(bn)+(b(n+1))^2(an)^2]}=
={[(a2)(b1)-(a1)(b2)]^2+[(a3)(b1)-(a1)(b3)]^2+..+
+[(a(n-1))(bn)-(an)(b(n-1))]^2}+
+{[(a(n+1))(b1)-b(n+1)(a1)]^2+
+..+[(a(n+1))(bn)-b(n+1)(bn)]^2}
所以n=k+1时,拉格朗日恒等式成立.
这样数学归纳法证明了拉格朗日恒等式.
另外,关于阿贝尔不等式,恕我不能帮助你,关于阿贝尔,我只知道阿贝尔积分、阿贝尔函数、阿贝尔积分方程、阿贝尔群、阿贝尔级数、阿贝尔部分和公式、阿贝尔基本定理、阿贝尔极限定理、阿贝尔可和性,并不知道阿贝尔不等式存在,抱歉。
用数学归纳法证明.
1.
显然n=1时,[(a1)^2][(b1)^2]=[(a1)(b1)]^2.
拉格朗日恒等式成立.
2.
设n=k时,拉格朗日恒等式成立.
当n=k+1时,
[(a1)^2+...+(a(n+1))^2][(b1)^2+...+(b(n+1))^2]-
-[(a1)(b1)+...+(a(n+1))(b(n+1))]^2=
={[(a1)^2+...+(an)^2][(b1)^2+...+(bn)^2]-
-[(a1)(b1)+...+(an)(bn)]^2}+
+{[(a(n+1))^2(b1)^2+(b(n+1))^2(a1)^2]+..+
+[(a(n+1))^2(bn)^2+(b(n+1))^2(an)^2]-
-2a(n+1)b(n+1)[(a1)(b1)+...+(an)(bn)]}=
={[(a2)(b1)-(a1)(b2)]^2+[(a3)(b1)-(a1)(b3)]^2+..+
+[(a(n-1))(bn)-(an)(b(n-1))]^2}+
+{[(a(n+1))^2(b1)^2-2a(n+1)b(n+1)(a1)(b1)+
+(b(n+1))^2(a1)^2]+..+[(a(n+1))^2(bn)^2-
-2a(n+1)b(n+1)(an)(bn)+(b(n+1))^2(an)^2]}=
={[(a2)(b1)-(a1)(b2)]^2+[(a3)(b1)-(a1)(b3)]^2+..+
+[(a(n-1))(bn)-(an)(b(n-1))]^2}+
+{[(a(n+1))(b1)-b(n+1)(a1)]^2+
+..+[(a(n+1))(bn)-b(n+1)(bn)]^2}
所以n=k+1时,拉格朗日恒等式成立.
这样数学归纳法证明了拉格朗日恒等式.
另外,关于阿贝尔不等式,恕我不能帮助你,关于阿贝尔,我只知道阿贝尔积分、阿贝尔函数、阿贝尔积分方程、阿贝尔群、阿贝尔级数、阿贝尔部分和公式、阿贝尔基本定理、阿贝尔极限定理、阿贝尔可和性,并不知道阿贝尔不等式存在,抱歉。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询