一半径为R的带电球体,其电荷体密度为:当r≤R时ρ=qr/(πR⁴);当r>R时ρ=0?

一半径为R的带电球体,其电荷体密度为:当r≤R时ρ=qr/(πR⁴);当r>R时ρ=0。(q为一正的常量)求:⑴球体的总电荷量;⑵球内、外各点的电场强度;⑶球... 一半径为R的带电球体,其电荷体密度为:当r≤R时ρ=qr/(πR⁴);当r>R时ρ=0。(q为一正的常量)求:
⑴球体的总电荷量;
⑵球内、外各点的电场强度;
⑶球内、外各点的电势。
展开
 我来答
帐号已注销
2020-10-19 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:165万
展开全部

半径为r的球壳带电量dQ=P*4πr²dr=(4q/R^4)r³dr

积分:Q=(4q/R^4)*R^4/4=q

根据高斯通量定理:沿闭合du曲面的电场通量=包围之电荷量/介电常数

选取闭合曲面为半径r的同心球面,r≥R,则4πr² * E = 4/3*πR³ * ρ / ε;有E = R³/(3ε)*(1/r²);

选取无穷远为0电势点,对E从r至∞积分为:1/r,即球外半径r处电势=1/r;

代入r=R;得球表面电势=1/R;

求体内任意点电势=球表面电势;

扩展资料:

电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的位置分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。

高斯定理反映了静电场是有源场这一特性。

高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的平方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。

参考资料来源:百度百科-高斯定理

ssitong
高粉答主

2020-05-09 · 每个回答都超有意思的
知道大有可为答主
回答量:1.3万
采纳率:90%
帮助的人:5104万
展开全部

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式