等差数列{an}、{bn}的前n项和分别为Sn和Tn,若Sn/Tn=2n/(3n+1),求an/bn的表达式。

 我来答
茹翊神谕者

2023-01-20 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1531万
展开全部

简单分析一下,答案如图所示

貊梓毓博明
2020-02-25 · TA获得超过3833个赞
知道大有可为答主
回答量:3068
采纳率:29%
帮助的人:441万
展开全部
首先:在等差数列{an}中,有如下性质:
若m+n=p+q,则am+an=ap+aq
因1+(2n-1)=n+n.所以有
a1+a(2n-1)=2an
故S(2n-1)=(2n-1)(a1+a(2n-1))/2=(2n-1)an
同理T(2n-1)=(2n-1)bn
故an/bn=S(2n-1)/T(2n-1)
=2(2n-1)/(3(2n-1)+1)
=(4n-2)/(6n-2)
=(2n-1)/(3n-1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式