已知数列an是单调递增的等差数列

已知数列an是单调递增的等差数列,从a1,a2,a3,a4,a5,a6,a7中取走任意三项,4项依然成单调递增的等差数列的概率... 已知数列an是单调递增的等差数列,从a1,a2,a3,a4,a5,a6,a7中取走任意三项,4项依然成单调递增的等差数列的概率 展开
 我来答
鲍怀布鸿羲
2020-06-21 · TA获得超过3417个赞
知道大有可为答主
回答量:3040
采纳率:27%
帮助的人:404万
展开全部
a1,a2,a3,a4,a5,a6,a7中取走任意三项的方法=7C3=35
因为an是单调递增的等差数列,因此唯有次序的跳跃选取,或不跳跃的选取,才能是等差数列
所以
不跳跃式的选取3个(如a3,a4,a5)有5种方法
跳跃1个的选取(如a1,a3,a5)有3种方法
跳跃2个的选取(如a1,a4,a7)有1种方法
因此答案为(5+3+1)/35=9/35
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式