高数证明题设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0,
高数证明题设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0,试ξ证:至少存在一点ξ∈(0,1),使f'(ξ)=-2f(ξ)/ξ成立若函数f(x)在[0,1...
高数证明题
设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0,试ξ证:至少存在一点ξ∈(0,1),使f'(ξ)=-2f(ξ)/ξ成立
若函数f(x)在[0,1]上可导,则必存在ξ∈(0,1)使f'(ξ)=2ξ[f(1)-f(0)] 展开
设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0,试ξ证:至少存在一点ξ∈(0,1),使f'(ξ)=-2f(ξ)/ξ成立
若函数f(x)在[0,1]上可导,则必存在ξ∈(0,1)使f'(ξ)=2ξ[f(1)-f(0)] 展开
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询