已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1...

已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.(1)求f(x)... 已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称. (1)求f(x)与g(x)的解析式; (2)若F(x)=g(x)-λf(x)在[-1,1]上是增函数,求实数λ的取值范围. 展开
 我来答
茆农系青
2020-01-13 · TA获得超过6070个赞
知道大有可为答主
回答量:3053
采纳率:33%
帮助的人:168万
展开全部
(1)由题意知:1+m+n=3对称轴为x=-1故-
m
2
=-1
解得m=2,n=0,
∴f(x)=x2+2x,
设函数y=f(x)图象上的任意一点Q(x0,y0)关于原点的对称点为P(x,y),
则x0=-x,y0=-y,因为点Q(x0,y0)在y=f(x)的图象上,
∴-y=x2-2x,
∴y=-x2+x,
∴g(x)=-x2+2x.
(2)F(x)=-x2+2x-λ(x2+2x)=-(1+λ)x2+2(1-λ)x
∵F(x)在(-1,1]上是增函且连续,F'(x)=-2(1+λ)x+2(1-λ)≥0
即λ≤
1-x
1+x
=
2
1+x
-1在({-1,1}]上恒成立,

2
1+x
-1在(-1,1]上为减函数,
当x=1时取最小值0,故λ≤0,所求λ的取值范围是(-∞,0],
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式