若函数y=ax-x-a(a>0且a≠1)有两个零点,则实数a的取值范围是______
1个回答
展开全部
解:函数f(x)=ax-x-a(a>0且a≠1)有两个零点
等价于:函数y=ax(a>0,且a≠1)与函数y=x+a的图象有两个交点,
由图象可知当0<a<1时两函数只有一个交点,不符合条件.
当a>1时(如图2),因为函数y=ax(a>1)的图象过点(0,1),
而直线y=x+a所过的点(0,a),此点一定在点(0,1)的上方,
所以一定有两个交点,所以实数a的取值范围是a>1.
故答案为:a>1.
等价于:函数y=ax(a>0,且a≠1)与函数y=x+a的图象有两个交点,
由图象可知当0<a<1时两函数只有一个交点,不符合条件.
当a>1时(如图2),因为函数y=ax(a>1)的图象过点(0,1),
而直线y=x+a所过的点(0,a),此点一定在点(0,1)的上方,
所以一定有两个交点,所以实数a的取值范围是a>1.
故答案为:a>1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询