等差中项公式是什么?
b=(a+c)/2。
若a,b,c三个数按这个顺序排列成等差数列,那么b叫a,c的等差中项, a, b, c满足b-a=c-b a,b,c成等差数列的充分必要条件是b=(a+c)/2,b为等差中项。
等差数列
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。
等差数列的基本公式
等差数列的和=(首项+末项)×项数÷2;
公差=第二项-首项;
项数=(末项-首项)÷公差+1;
等差数列的第n项=首项+(n-1)×公差;
首项=末项-公差×(项数-1)。
等差中项公式是:
Sn=na(n+1)/2 n为奇数
sn=n/2(A n/2+A n/2 +1) n为偶数
等差数列基本公式: 末项=首项+(项数-1)*公差 项数=(末项-首项)÷公差+1 首项=末项-(项数-1)*公差 和=(首项+末项)*项数÷2 末项:最后一位数 首项:第一位数 项数:一共有几位数 和:求一共数的总和。
等差数列
等差数列如果有奇数项,那么和就等于中间一项乘以项数,如果有偶数项,和就等于中间两项和乘以项数的一半,这就是中项求和。
公差为d的等差数列{an},当n为奇数是时,等差中项为一项,即等差中项等于首尾两项和的二分之一,也等于总和Sn除以项数n。将求和公式代入即可。当n为偶数时,等差中项为中间两项,这两项的和等于首尾两项和,也等于二倍的总和除以项数n。