常见高阶导数8个公式是什么?
1个回答
展开全部
常见高阶导数8个公式是:
1、y=c,y'=0(c为常数) 。
2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。
3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。
4、y=logax, y'=1/(xlna)(a>0且 a≠1);y=lnx,y'=1/x。
5、y=sinx,y'=cosx。
6、y=cosx,y'=-sinx。
7、y=tanx,y'=(secx)^2=1/(cosx)^2。
8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。
介绍:
1、导数的四则运算:(uv)'=uv'+u'v (u+v)'=u'运袜+v' (铅销u-v)'=u'-v' (u/v)'=(u'v-uv')/v^2。
2、原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x'。
3、复合函旁激激数的导数: 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数(称为链式法则)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询