求大神解第四题题 用泰勒公式计算这两个极限 麻烦写下详细过程感谢感谢!!
(4)
(1)
x->0
cosx =1-(1/2)x^2 +(1/24)x^4 +o(x^4)
e^(-x^2/2)
= 1 -x^2/2 + (1/2)[-x^2/2]^2 +o(x^4)
= 1 -(1/2)x^2 + (1/8)x^4 +o(x^4)
cosx -e^(x^2/2) = (1/24-1/8)x^4 +o(x^4) =-(1/12)x^4 +o(x^4)
lim(x->0) [cosx -e^(-x^2/2)]/(x^3.sinx)
=lim(x->0) [cosx -e^(x^2/2)]/x^4
=lim(x->0) -(1/12)x^4/x^4
=-1/12
(2)
分母
(sinx)^2 = x^2+o(x^2)
cosx =1-(1/2)x^2+o(x^2)
e^(x^2) = 1+x^2+o(x^2)
cosx -e^(x^2) = -(3/2)x^2+o(x^2)
[cosx-e^(x^2)].(sinx)^2 =-(3/2)x^4+o(x^4)
分子
√(1+x^2) = 1+(1/2)x^2 -(1/8)x^4 +o(x^4)
2√(1+x^2) = 2+x^2 -(1/4)x^4 +o(x^4)
2√(1+x^2) -2-x^2 =-(1/4)x^4 +o(x^4)
lim(x->0) [2√(1+x^2) -2-x^2]/{ [cosx-e^(x^2)].(sinx)^2 }
=lim(x->0) -(1/4)x^4 /[-(3/2)x^4]
=1/6
减法展开要注意同阶,但是系数要不同。