4个回答
展开全部
将sin^2(8x)用三角恒等式降幂后,可以用tabular method直接计算得:
∫x sin^2(8x) dx
= ∫x [1/2 - (1/2)cos(16x)] dx
= (1/4)x^2 - (1/32)[xsin(16x) + (1/16)cos(16x)] + c
∫x sin^2(8x) dx
= ∫x [1/2 - (1/2)cos(16x)] dx
= (1/4)x^2 - (1/32)[xsin(16x) + (1/16)cos(16x)] + c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫xsin²(8x)dx=(1/2)∫x[1-cos(16x)]dx=(1/2)[∫xdx-∫xcos(16x)dx]
=(1/2)[(1/2)x²-(1/16)∫xd[sin(16x)]=(1/4)x²-(1/32)[xsin(16x)-∫sin(16x)dx]
=(1/4)x²-(1/32)[xsin(16x)-(1/16)∫sin(16x)d(16x)]
=(1/4)x²-(1/32)[xsin(16x)+(1/16)cos(16x)]+C
=(1/4)x²-(1/32)xsin(16x)-(1/512)cos(16x)+C;
=(1/2)[(1/2)x²-(1/16)∫xd[sin(16x)]=(1/4)x²-(1/32)[xsin(16x)-∫sin(16x)dx]
=(1/4)x²-(1/32)[xsin(16x)-(1/16)∫sin(16x)d(16x)]
=(1/4)x²-(1/32)[xsin(16x)+(1/16)cos(16x)]+C
=(1/4)x²-(1/32)xsin(16x)-(1/512)cos(16x)+C;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询