高等数学,这题怎么做?
答案是分情况,x>1和x<-1,然后令x=1/t,最后求出来的是方法一的答案,但是x加了个绝对值,所以问题是①为啥分情况②以下两个答案是相等吗(本人看着好像不相等)...
答案是分情况,x>1和x<-1,然后令x=1/t,最后求出来的是方法一的答案,但是x加了个绝对值,所以问题是
①为啥分情况
②以下两个答案是相等吗(本人看着好像不相等) 展开
①为啥分情况
②以下两个答案是相等吗(本人看着好像不相等) 展开
展开全部
根据你提供的信息,我们可以进行以下推导:
由题目中的代换 x = csc(t),可以得到
dx = (-csc(t) * cot(t)) dt
将其代入原式中:
∫((csc(t) + cot(t))/csc(t)) dt
= ∫(1 + cot(t)/csc(t)) dt
= ∫(1 + cos(t)/sin(t)) dt
= ∫(1 + x/sec(t)) * (-dx/(x^2)) (利用代换 x = sec(t) 和 dx = -sec(t)*tan(t) dt)
= ∫(-1/x - cos(t)/(x^2sin(t))) dt
= -ln|x| - ∫((sin^2(t) - 1)/(x^3*sin(t))) dt
= -ln|x| + ∫(1/x^3) dt - ∫(1/(x*sin(t))) dt
对于第一个积分 ∫(1/x^3) dt,直接计算可得:
∫(1/x^3) dt = -1/(2x^2) + C1
其中,C1 为积分常数。
对于第二个积分 ∫(1/(x*sin(t))) dt,先将其化简:
∫(1/(x*sin(t))) dt = ∫(csc(t)/x) dt
= ln|csc(t) - cot(t)| + C2
其中,C2 为积分常数。
因此,原式可以化简为:
-ln|x| - 1/(2x^2) - ln|csc(t) - cot(t)| + C3
其中,C3 为积分常数。
根据题目中的代换 x = sec(t),可得到新的 t 值为:
t = arcsin(1/x) + C4
其中,C4 为常数。
因此,原式可以进一步化简为:
-ln|x| - 1/(2x^2) - ln|cot(arcsin(1/x)) - 1/√(1 - 1/x^2)| + C5
其中,C5 是一个常数。
综上所述,根据 x = csc(t) 和 x = sec(t) 两种代换方式,得到的原式结果分别为:
- ln|x| - 1/(2x^2) - ln|cot(arcsin(1/x)) - 1/√(1 - 1/x^2)| + C5
或者
arcsin(x) + 1/(2x^2) - ln|tan(arcsin(x/√(1+x^2))) + sec(arcsin(x))| + C6
其中,C5 和 C6 都是常数。
由题目中的代换 x = csc(t),可以得到
dx = (-csc(t) * cot(t)) dt
将其代入原式中:
∫((csc(t) + cot(t))/csc(t)) dt
= ∫(1 + cot(t)/csc(t)) dt
= ∫(1 + cos(t)/sin(t)) dt
= ∫(1 + x/sec(t)) * (-dx/(x^2)) (利用代换 x = sec(t) 和 dx = -sec(t)*tan(t) dt)
= ∫(-1/x - cos(t)/(x^2sin(t))) dt
= -ln|x| - ∫((sin^2(t) - 1)/(x^3*sin(t))) dt
= -ln|x| + ∫(1/x^3) dt - ∫(1/(x*sin(t))) dt
对于第一个积分 ∫(1/x^3) dt,直接计算可得:
∫(1/x^3) dt = -1/(2x^2) + C1
其中,C1 为积分常数。
对于第二个积分 ∫(1/(x*sin(t))) dt,先将其化简:
∫(1/(x*sin(t))) dt = ∫(csc(t)/x) dt
= ln|csc(t) - cot(t)| + C2
其中,C2 为积分常数。
因此,原式可以化简为:
-ln|x| - 1/(2x^2) - ln|csc(t) - cot(t)| + C3
其中,C3 为积分常数。
根据题目中的代换 x = sec(t),可得到新的 t 值为:
t = arcsin(1/x) + C4
其中,C4 为常数。
因此,原式可以进一步化简为:
-ln|x| - 1/(2x^2) - ln|cot(arcsin(1/x)) - 1/√(1 - 1/x^2)| + C5
其中,C5 是一个常数。
综上所述,根据 x = csc(t) 和 x = sec(t) 两种代换方式,得到的原式结果分别为:
- ln|x| - 1/(2x^2) - ln|cot(arcsin(1/x)) - 1/√(1 - 1/x^2)| + C5
或者
arcsin(x) + 1/(2x^2) - ln|tan(arcsin(x/√(1+x^2))) + sec(arcsin(x))| + C6
其中,C5 和 C6 都是常数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为t是有范围的 x取的是t的极限值
这俩肯定不相等的
这俩肯定不相等的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
记录了我就默默。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询