求arctanx原函数的原函数。

 我来答
lhmhz
高粉答主

2022-03-05 · 专注matlab等在各领域中的应用。
lhmhz
采纳数:7263 获赞数:16991

向TA提问 私信TA
展开全部
arctanx原函数的原函数就是二次积分计算。
∫arctan(x)dx=x*arctan(x) - ln(x^2 + 1)/2
∫(x*arctan(x) - ln(x^2 + 1)/2)dx
=∫x*arctan(x) dx-∫ln(x^2 + 1)/2)dx
=(x^2*arctan(x))/2 - arctan(x)/2 - x*(ln(x^2 + 1)/2 - 1/2)+C
计算技巧:分部积分法,基本积分公式,积分运算法则
樱桃园的海角
高能答主

2022-03-05 · 各种资料慢慢增加中...
樱桃园的海角
采纳数:130 获赞数:835

向TA提问 私信TA
展开全部
arctanx的原函数是x*arctanx- (1/2)ln (1+x2)+C。 原函数是指对于一个概念在某区间的已知函数f (x),假如存在可导函数F (x),使得在该区间内的任一点都存在dF (x)=f (x)dx,则在该区间内就称函数F (x)为函数f (x)的原函数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
数码答疑

2022-03-05 · 解答日常生活中的数码问题
数码答疑
采纳数:8803 获赞数:18618

向TA提问 私信TA
展开全部
求arctanx原函数的原函数。
答:arctanx的不定积分是xarctanx-(1/2)ln(1+x^2)+C。
将xarctanx-(1/2)ln(1+x^2)+C再次积分,就是原函数的原函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
十全小秀才

2022-09-30 · 三人行必有我师焉!!
十全小秀才
采纳数:2252 获赞数:9379

向TA提问 私信TA
展开全部

解:∫arctanxdx=xarctanx-∫x×1/(1+x²)dx=

xarctanx-0.5ln(1+x²)+c=xarctanx-ln√(1+x²)+c(c为任意常数)

希望可以帮到你

解:请把具体题目发过来,如下图:

解常微分方程

解:微分方程为dy/dx+(1+xy³)/(1+x³y)=0,(1+x³y)dy+(1+xy³)dx=0,dy+x³ydy+dx+xy³dx=0,dy+dx+x³ydy+y³xdx=0,d(x+y)+x³y³(dy/y²+dx/x²)=0,d(x+y)-x³y³(-dy/y²-dx/x²)=0,d(x+y)=x³y³d(1/y+1/x),d(x+y)=x³y³d[(x+y)/xy];设x+y=u,xy=v,方程化为du=v³d(u/v),再设u=zv,方程化为d(zv)=v³dz,zdv+vdz=v³dz,zdv=(v³-v)dz,dv/(v³-v)=dz/z,vdv/(v²-1)-dv/v=dz/z,0.5ln|v²-1|-ln|v|=ln|z|+0.5ln|a|(a为任意非零常数),ln|v²-1|=ln|av²z²|,v²-1=av²z²,有v²-1=au²,微分方程的解为x²y²-1=a(x+y)²请参考

随着分析学对函数引入微分运算,表示未知函数的导数以及自变量之间的关系的方程进入数学家的视野,这就是微分方程。微分方程的形成与发展与力学、天文学、物理学等科学技术的发展密切相关。因为在现实的世界中,物质的运动及其变化规律在数学上是用函数关系来描述的,这意味着问题的解决就是要去寻求满足某些条件的函数,而这类问题就转换为微分方程的求解问题。

解微分问题的基本思想类似于解代数方程,要把问题中已知函数和未知函数之间的关系找出来,进而得到包含未知函数的一个或几个方程,然后使用分析的方法去求得未知函数的表达式。

如果微分方程中出现的未知函数只含一个自变量,那么该类微分方程就是常微分方程。常微分方程的通解构成一个函数族,主要研究方程或方程组的分类及解法、解的存在性和唯一性、奇解、定性理论等等内容。

现在,常微分方程在自动控制、各种电子学装置的设计、轨迹的计算、飞机飞行的稳定性的研究、化学反应过程稳定性的研究等学科领域内有着重要的应用。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式