因式分解教案
作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案有助于学生理解并掌握系统的知识。优秀的教案都具备一些什么特点呢?以下是我为大家收集的因式分解教案3篇,欢迎阅读,希望大家能够喜欢。
因式分解教案 篇1
【教学目标】
1、了解因式分解的概念和意义;
2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
【教学重点、难点】
重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
【教学过程】
一、情境导入
看谁算得快:(抢答)
(1)若a=101,b=99,则a2-b2=___________;
(2)若a=99,b=-1,则a2-2ab+b2=____________;
(3)若x=-3,则20x2+60x=____________。
二、探究新知
1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)
3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)
板书课题:§6.1 因式分解
因式分解概念:把一个多项式化成几个整式的积的形式叫做 因式分解 ,也叫 分解因式 。
三、前进一步
1、让学生继续观察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?
2、因式分解与整式乘法的关系:
因式分解
结合:a2-b2 (a+b)(a-b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法的相互关系——相反变形。
四、巩固新知
1、 下列代数式变形中,哪些是因式分解?哪些不是?为什么?
(1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。
2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的.两个多项式的因式分解吗?把结果与你的同伴交流。
五、应用解释
例 检验下列因式分解是否正确:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).
分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。
练习 计算下列各题,并说明你的算法:(请学生板演)
(1)872+87×13
(2)1012-992
六、思维拓展
1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n=
2.机动题:(填空)x2-8x+m=(x-4)( ),且m=
七、课堂回顾
今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
八、布置作业
作业本(1) ,一课一练
(九)教学反思:
因式分解教案 篇2
教学目标
教学知识点
使学生了解因式分解的好处,明白它与整式乘法在整式变形过程中的相反关系。
潜力训练要求。
透过观察,发现分解因式与整式乘法的关系,培养学生观察潜力和语言概括潜力。
情感与价值观要求。
透过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系。
教学重点
1、理解因式分解的好处。
2、识别分解因式与整式乘法的关系。
教学难点透过观察,归纳分解因式与整式乘法的关系。
教学方法观察讨论法
教学过程
Ⅰ、创设问题情境,引入新课
导入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)
Ⅱ、讲授新课
1、讨论993-99能被100整除吗?你是怎样想的?与同伴交流。
993-99=99×98×100
2、议一议
你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流。
3、做一做
(1)计算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;
③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________
(2)根据上面的算式填空:
①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();
④y2-6y+9=()2。⑤a3-a=()()。
定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式。
4。想一想
由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?
下面我们一齐来总结一下。
如:m(a+b+c)=ma+mb+mc(1)
ma+mb+mc=m(a+b+c)(2)
5、整式乘法与分解因式的联系和区别
ma+mb+mcm(a+b+c)。因式分解与整式乘法是相反方向的变形。
6。例题下列各式从左到右的变形,哪些是因式分解?
(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);
(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。
Ⅲ、课堂练习
P40随堂练习
Ⅳ、课时小结
本节课学习了因式分解的好处,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形。
因式分解教案 篇3
教学设计思想:
本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。
教学目标
知识与技能:
会用平方差公式对多项式进行因式分解;
会用完全平方公式对多项式进行因式分解;
能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;
提高全面地观察问题、分析问题和逆向思维的能力。
过程与方法:
经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。
情感态度价值观:
通过学习进一步理解数学知识间有着密切的联系。
教学重点和难点
重点:①运用平方差公式分解因式;②运用完全平方式分解因式。
难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式
关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。