22. 如图,在正方体ABCD—A1B1C1D1中,已知M为棱AB的中点. Ⅰ)AC1//平面B1MC; (Ⅱ)求证:平面D1B1C

看涆余
2010-11-05 · TA获得超过6.7万个赞
知道大有可为答主
回答量:7626
采纳率:85%
帮助的人:4337万
展开全部
第二问是证明AC1垂直平面D1B1C吗?
1、取CD中点N,连结AN、C1N,C1N,
∵CN=CD/2=AB/2,
AM=AB/2,
∴CN=AM,
∵且CN//AM,
∴四边形AMCN是平行四边形,
∴AN//MC,
∵MN//BC,且MN=BC,
∴四边形MNC1B1是平行四边形,
∴C1N//MB1,
∵AN∩C1N=N,
∵MC∩B1C=C,
∴平面MCB1//平面ANC1,
AC1∈平面ANC1,
AC1//平面MCB1。
2、连结BC1,则BC1⊥B1C,(正方形对角线相垂直),
∵AB⊥平面BCC1B1,
B1C∈平面BCC1B1,
∴AB⊥B1C,
∵AB∩BC1=B,
∴B1C⊥平面ABC1,
∵AC1∈平面ABC1,
∴B1C⊥AC1,
同理可得,
B1D1⊥AC1,
而B1D1∩B1C=B1,
∴AC1⊥平面D1B1C。
asd20060324
2010-11-05 · TA获得超过5.4万个赞
知道大有可为答主
回答量:1.8万
采纳率:62%
帮助的人:8810万
展开全部
1.连接BC1交B1C于N,连接MN,M为AB中点,N为BC中点,MN//AC1,AC1//平面

B1MC;

2.AC1⊥B1D1,AC1⊥B1C,AC1⊥平面D1B1C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
phantom_feng
2010-11-05
知道答主
回答量:12
采纳率:0%
帮助的人:0
展开全部
1、连结BC1交B1C于点N,连结MN,在三角形ABC1中,M、N分别为AB、BC1中点,所以MN//AC1,所以AC1//平面B1MC
2、因为MB1=MC,N为B1C中点,所以在等腰三角形MCB1中,MN为高,MN垂直于B1C,又MN//AC1,所以AC1垂直于B1C,同理,AC1垂直于B1D1,所以AC1垂直于平面D1B1C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式