求不定积分∫x^2/根号下(x^2+a^2) dx (a>0)
1个回答
展开全部
∫x^2/√(a^2+x^2)dx
=∫(x^2+a^2-a^2)/√(a^2+x^2)dx
=∫√(x^2+a^2)dx-a^2∫dx/√(a^2+x^2)
=x√(x^2+a^2)- ∫x√d(x^2+a^2)dx-a^2arsh(x/a)
= x√(x^2+a^2)- ∫x^2dx/√(x^2+a^2)-a^2(ln(x/a+√(1+(x/a)^2)),
2∫x^2dx/√(x^2+a^2)= x√(x^2+a^2)-a^2{ln[x+√(a^2+x^2)]},
∴∫x^2dx/√(a^2+x^2)= x√(a^2+x^2)/2-a^2ln[x+√(a^2+x^2)]/2+C
这里用到分部积分和反双曲正弦函数arshx.
=∫(x^2+a^2-a^2)/√(a^2+x^2)dx
=∫√(x^2+a^2)dx-a^2∫dx/√(a^2+x^2)
=x√(x^2+a^2)- ∫x√d(x^2+a^2)dx-a^2arsh(x/a)
= x√(x^2+a^2)- ∫x^2dx/√(x^2+a^2)-a^2(ln(x/a+√(1+(x/a)^2)),
2∫x^2dx/√(x^2+a^2)= x√(x^2+a^2)-a^2{ln[x+√(a^2+x^2)]},
∴∫x^2dx/√(a^2+x^2)= x√(a^2+x^2)/2-a^2ln[x+√(a^2+x^2)]/2+C
这里用到分部积分和反双曲正弦函数arshx.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询