二元函数的极值及其判定(基础篇)

 我来答
茹翊神谕者

2023-08-13 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1597万
展开全部

简单分析一下,答案如图所示

黑科技1718
2022-07-22 · TA获得超过5872个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:81.7万
展开全部
定义设二元函数z=f(x,y)的定义域为D,点M0(x0,y0)(M∈D)的某一邻域在D内有定义,对于该邻域内异于M0的任何点(x,y),如果

   f(x,y)> f(xo,yo),

则称点Mo(x,yo)是函数z=f(x,y)的一个极小值点,称f(x0,yo)为函数z=f(x,y)的一个极小值.如果

 f(x,y)< f(xo, yo),

则称点Mo(xo,yo)是函数z=f(x,y)的一个极大值点,称f(xo,yo)为函数z=f(x,y)的一个极大值.

极小值点和极大值点统称极值点;极小值和极大值统称极值

显然,如果二元函数z=f(x,y)在点(xo,yo)取得极值,则一元函数z=f(x,yo)在点x取得极值,一元函数z=f(xo,y)在点yo取得极值,此得到极值点的必要条件

定理1(必要条件)设二元函数z=f(x,y)在点(xo,yo)取得极值,且fx(xo,yo),fy(o,yo)存

在,则     fx(xo,yo)=0,fy(xo,yo)=0.

称两个偏导数都为0的点为二元函数z=f(x,y)的驻点,驻点不一定就是极值点

(充分条件)设二元函数z=f(x,y)在点Mo(xo,yo)的某一邻域内连续,且有连续的一二阶偏导数,又Mo(xo,yo)是驻点,令

则(1)当△<0时,点Mo(x,yo)是极值点.且当A<0时,点Mo(xo,yo)是极大值点;当A>0时,Mo(x,y)是极小值点;

(2)当△>0时,点Mo(x0,y)不是极值点;

(3)当△=0时,Mo(x,yo)可能是极值点,也可能不是极值点,需另作讨论
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式