必修四数学第二章知识点

 我来答
优点教育17
2022-06-29 · TA获得超过7636个赞
知道大有可为答主
回答量:5800
采纳率:99%
帮助的人:299万
展开全部

必修四数学第二章知识点1

   1、平面向量基本概念

  有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB;

  向量的模:有向线段AB的长度叫做向量的模,记作|AB|;

  零向量:长度等于0的向量叫做零向量,记作或0。(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);

  相等向量:长度相等且方向相同的向量叫做相等向量;

  平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;

  单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示,平行于坐标轴的单位向量习惯上分别用i、j表示。

  相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,—(—a)=a,零向量的相反向量仍然是零向量。

   2、平面向量运算

  加法与减法的代数运算:

  (1)若a=(x1,y1),b=(x2,y2)则a b=(x1+x2,y1+y2)。

  向量加法与减法的几何表示:平行四边形法则、三角形法则。

  向量加法有如下规律:+ = +(交换律);+(+c)=(+)+c(结合律);

  实数与向量的积:实数与向量的积是一个向量。

  (1)| |=| |·| |;

  (2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0。

  两个向量共线的充要条件:

  (1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= 。

  (2)若=(),b=()则‖b 。

   3、平面向量基本定理

  若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得= e1+ e2。

   4、平面向量有关推论

  三角形ABC内一点O,OA·OB=OB·OC=OC·OA,则点O是三角形的垂心。

  若O是三角形ABC的外心,点M满足OA+OB+OC=OM,则M是三角形ABC的垂心。

  若O和三角形ABC共面,且满足OA+OB+OC=0,则O是三角形ABC的重心。

  三点共线:三点A,B,C共线推出OA=μOB+aOC(μ+a=1)

必修四数学第二章知识点2

  一、两个定理

  1、共线向量定理:

  两向量共线(平行)等价于两个向量满足数乘关系(与实数相乘的向量不是零向量),且数乘系数唯一。用坐标形式表示就是两向量共线则两向量坐标的“内积等于外积”。此定理可以用来证向量平行或者使用向两平行的条件。此定理的延伸是三点共线!三点共线可以向两个向量的等式转化:1.三个点中任意找两组点构成的两个向量共线,满足数乘关系;2.以同一个点为始点、三个点为终点构造三个向量,其中一个可由另外两个线性表示,且系数和为1。

  2、平面向量基本定理:

  平面内两个不共线的向量可以线性表示任何一个向量,且系数唯一。这两个不共线的向量构成一组基底,这两个向量叫基向量。此定理的作用有两个:1.可以统一题目中向量的形式;2.可以利用系数的唯一性求向量的系数(固定的算法模式)。

  二、三种形式

  平面向量有三种形式,字母形式、几何形式、坐标形式。字母形式要注意带箭头,多考虑几何形式画图解题,特别是能得到特殊的三角形和四边形的情况,向量的坐标和点的坐标不要混淆,向量的坐标是其终点坐标减始点坐标,特殊情况下,若始点在原点,则向量的坐标就是终点坐标。

  选择合适的向量形式解决问题是解题的一个关键,优先考虑用几何形式画图做,然后是坐标形式,最后考虑字母形式的变形运算。

  三、四种运算

  加、减、数乘、数量积。前三种运算是线性运算,结果是向量(0乘以任何向量结果都是零向量,零向量乘以任何实数都是零向量);数量积不是线性运算,结果是实数(零向量乘以任何向量都是0)。线性运算符合所有的实数运算律,数量积不符合消去律和结合律。

  向量运算也有三种形式:字母形式、几何形式和坐标形式。

  加减法的字母形式注意首尾相接和始点重合。数量积的字母形式公式很重要,要能熟练灵活的使用。

  加减法的几何意义是平行四边形和三角形法则,数乘的几何意义是长度的伸缩和方向的共线,数量积的几何意义是一个向量的模乘以另一个向量在第一个向量方向上的射影的数量。向量的夹角用尖括号表示,是两向量始点重合或者终点重合时形成的角,首尾相接形成的角为向量夹角的补角。射影数量有两种求法:1.向量的模乘以夹角余弦;2.两向量数量积除以另一向量的模。

  加减法的坐标形式是横纵坐标分别加减,数乘的坐标形式是实数乘以横、纵坐标,数量积的坐标形式是横坐标的乘积加纵坐标的乘积。

  四、五个应用

  求长度、求夹角、证垂直、证平行、向量和差积的模与模的和差积的关系。前三个应用是数量积的运算性质,证平行的数乘运算性质,零向量不能说和哪个向量方向相同或相反,规定零向量和任意向量都平行且都垂直;一个向量乘以自己再开方就是长度;两个向量数量积除以模的乘积就是夹角的余弦;两个向量满足数乘关系则必定共线(平行)。一个向量除以自己的模得到和自己同方向的单位向量,加符号是反方向的单位向量

   数学函数的值域与最值知识点

  1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

  (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.

  (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.

  (3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.

  (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.

  (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.

  (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.

  (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.

  2、求函数的最值与值域的区别和联系

  求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的`角度不同,因而答题的方式就有所相异.

  如函数的值域是(0,16],最大值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.

  3、函数的最值在实际问题中的应用

  函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.

必修四数学第二章知识点3

  1.向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。

  2.规定若线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。具有方向和长度的线段叫做有向线段。

  3.向量的模:向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。

  注:向量的模是非负实数,是可以比较大小的。因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。

  4.单位向量:长度为一个单位(即模为1)的向量,叫做单位向量.与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0。

  5.长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。

  向量的计算

  1.加法

  交换律:a+b=b+a;

  结合律:(a+b)+c=a+(b+c)。

  2.减法

  如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

  加减变换律:a+(-b)=a-b

  3.数量积

  定义:已知两个非零向量a,b。作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π

  向量的数量积的运算律

  a·b=b·a(交换律)

  (λa)·b=λ(a·b)(关于数乘法的结合律)

  (a+b)·c=a·c+b·c(分配律)

  向量的数量积的性质

  a·a=|a|的平方。

  a⊥b〈=〉a·b=0。

  |a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)

   高中学好数学的方法是什么

  数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。

  数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。

  数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。

  数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。

  数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。

   数学函数的奇偶性知识点

  1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).

  正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).

  2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式