牛顿莱布尼茨公式证明
展开全部
牛顿莱布尼茨公式证明是一个连续函数在区间[a,b]上的定积分等于它的任意一个原函数在区间[a,b]上的增量。给定积分提供了一个有效而简便的计算方法,大大简化了定积分的计算过程。
牛顿-莱布尼茨公式(Newton-Leibnizformula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。
牛顿-莱布尼茨公式(Newton-Leibnizformula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询