0的1/3次幂为什么都是正整数?
1个回答
展开全部
因为定义0次幂的时候,是按照a^0=a^(1-1)=a/a这样的思路来定义的,那么a就不能等于0。
幂(power)是指数运算的结果。当m为正整数时,n_指该式意义为m个n相乘。当m为小数时,m可以写成a/b(其中a、b为整数),n_表示n_再开b次根号。当m为虚数时,则需要利用欧拉公式 eiθ=cosθ+isinθ,再利用对数性质求解。把n_看作乘方的结果,叫做n的m次幂,也叫n的m次方。
数学中的“幂”,是“幂”这个字面意思的引申,“幂”原指盖东西的布巾,数学中“幂”是乘方的结果,而乘方的表示是通过在一个数字上加上标的形式来实现的,故这就像在一个数上“盖上了一头巾”,在现实中盖头巾又有升级的意思,所以把乘方叫做幂正好契合了数学中指数级数快速增长含义,形式上也很契合,所以叫做幂。
幂不符合结合律和交换律。
因为十的次方很易计算,只需在后加零即可,所以科学记数法借助此简化记录数的方式;二的次方在计算机科学中很有用。
幂(power)是指数运算的结果。当m为正整数时,n_指该式意义为m个n相乘。当m为小数时,m可以写成a/b(其中a、b为整数),n_表示n_再开b次根号。当m为虚数时,则需要利用欧拉公式 eiθ=cosθ+isinθ,再利用对数性质求解。把n_看作乘方的结果,叫做n的m次幂,也叫n的m次方。
数学中的“幂”,是“幂”这个字面意思的引申,“幂”原指盖东西的布巾,数学中“幂”是乘方的结果,而乘方的表示是通过在一个数字上加上标的形式来实现的,故这就像在一个数上“盖上了一头巾”,在现实中盖头巾又有升级的意思,所以把乘方叫做幂正好契合了数学中指数级数快速增长含义,形式上也很契合,所以叫做幂。
幂不符合结合律和交换律。
因为十的次方很易计算,只需在后加零即可,所以科学记数法借助此简化记录数的方式;二的次方在计算机科学中很有用。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询