对于未知参数最大似然估计量和矩估计量哪个更好的例子

 我来答
帐号已注销
2022-03-05 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:162万
展开全部

对于未知参数最大似然估计量和矩估计量更好的例子:总体X服从参数为u,a^2的正态分布,现有样本值x1、x2、xn,那么根据样本求出的a^2的矩估计量和最大似然估计量的分母都是1/n,不升羡是无偏估计。

根据题目给出的概率密度函数,计算总体的原点矩(如果只有一个参数只要计算一阶原点矩,如果有两个参数要计算一阶和二阶)。由于有参数这里得到的都是带有参数的式吵雹拍子。如果题目给的是某一个常见的分布,就直接列出相应的原点矩(E(x))。   

标准特点

无偏性是指估计量抽样分布的数学期望等于总体参数的真值。无偏性的含义是,估计量是一随机变量,对于样本的每一次实现,由估计量算出的估计值有时可能偏高,有时可能偏低,但这些估计值平均起来等于总体参数的真值。在平均肆戚意义下,无偏性表示没有系统误差。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式