向量垂直公式
设两个向量为向量a、向量b,向量a=KX向量b(K是常数)时,向量a、向量b平行,向量a?向量b=0时,向量a、向量b垂直。
比相等平行乘积得-1垂直,向量a=(x1,y1)b=(x2,y2),平行:x1y2-x2y1=0。垂直:x1x2+y1y2=0。a的斜率为y1/x1b的斜率为y2/x2,则根据直线斜率有二条直线平行则y1/x1=y2/x2展开就是你问的向量平行的公式,根据直线斜率有二条直线垂直则y1/x1*y2/x2=-1展开就是你问的向量垂直的公式。
如果设a=(x,y),b=(x,y)如果a?b=0(a和b的数量级)即xx+yy=0,则a⊥b。如果a×b=0,则向量a平行与向量b;λa=b,a与b也平行。
向量垂直公式:x1*x2+y1*y2=0和|A|*|B|*cos(A与B的夹角)=0。
垂直公式
a,b是两个向量
a=(a1,a2) b=(b1,b2)
a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb,λ是一个常数
a垂直b:a1b1+a2b2=0
证明:
①几何角度:
向量A (x1,y1),长度 L1 =√(x1²+y1²)
向量B (x2,y2),长度 L2 =√(x2²+y2²)
(x1,y1)到(x2,y2)的距离:D=√[(x1 - x2)² + (y1 - y2)²]
两个向量垂直,根据勾股定理:L1² + L2² = D²
∴ (x1²+y1²) + (x2²+y2²) = (x1 - x2)² + (y1 - y2)²
∴ x1² + y1² + x2² + y2² = x1² -2x1x2 + x2² + y1² - 2y1y2 + y2²
∴ 0 = -2x1x2 - 2y1y2
∴ x1x2 + y1y2 = 0
②扩展到三维角度:x1x2 + y1y2 + z1z2 = 0,那么向量(x1,y1,z1)和(x2,y2,z2)垂直
综述,对任意维度的两个向量L1,L2垂直的充分必要条件是:L1×L2=0 成立。
什么是向量
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
广告 您可能关注的内容 |