dy/dx=(1-y)/(y-x)的通解
1个回答
展开全部
(1)显然,y=1是原方程的解
(2)当y≠1时,
∵dy/dx=(1-y)/(y-x)
==>(y-1)dx-xdy=-ydy
==>dx/(y-1)-xdy/(y-1)^2=-ydy/(y-1)^2 (等式两端同除(y-1)^2)
==>d(x/(y-1))=[-1/(y-1)-1/(y-1)^2]dy
==>x/(y-1)=-ln│y-1│+1/(y-1)+ln│C│ (C是非零常数)
==>(x-1)/(y-1)=ln│C/(y-1)│
==>e^((x-1)/(y-1))=C/(y-1)
==>y-1=Ce^((x-1)/(1-y))
==>y=1+Ce^((x-1)/(1-y))
∴y=1+Ce^((x-1)/(1-y))也是原方程的解
故综合(1)和(2)知,原方程的通解是y=1和y=1+Ce^((x-1)/(1-y))(y≠1).
(2)当y≠1时,
∵dy/dx=(1-y)/(y-x)
==>(y-1)dx-xdy=-ydy
==>dx/(y-1)-xdy/(y-1)^2=-ydy/(y-1)^2 (等式两端同除(y-1)^2)
==>d(x/(y-1))=[-1/(y-1)-1/(y-1)^2]dy
==>x/(y-1)=-ln│y-1│+1/(y-1)+ln│C│ (C是非零常数)
==>(x-1)/(y-1)=ln│C/(y-1)│
==>e^((x-1)/(y-1))=C/(y-1)
==>y-1=Ce^((x-1)/(1-y))
==>y=1+Ce^((x-1)/(1-y))
∴y=1+Ce^((x-1)/(1-y))也是原方程的解
故综合(1)和(2)知,原方程的通解是y=1和y=1+Ce^((x-1)/(1-y))(y≠1).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询