f(x)=sinxcosx+sin^2x 求函数的单调递增区间
1个回答
展开全部
f(x)=(sinx)^2+sinxcosx
=[cos(2x)-1]/2+sin(2x)/2
=(1/2)[sin(2x)+cos(2x)]-1/2
=(√2/2)sin(2x+π/4)-1/2
sin 2x+π/4的 递增区间为 [2kπ - π/2,2kπ+π/2]
2x+π/4=2kπ - π/2
2x=2kπ - 3π/4
x=kπ - 3π/8
2x+π/4=2kπ+ π/2
2x=2kπ + π/4
x=kπ +π/8
所以 递增区间 [kπ - 3π/8,kπ +π/8]
=[cos(2x)-1]/2+sin(2x)/2
=(1/2)[sin(2x)+cos(2x)]-1/2
=(√2/2)sin(2x+π/4)-1/2
sin 2x+π/4的 递增区间为 [2kπ - π/2,2kπ+π/2]
2x+π/4=2kπ - π/2
2x=2kπ - 3π/4
x=kπ - 3π/8
2x+π/4=2kπ+ π/2
2x=2kπ + π/4
x=kπ +π/8
所以 递增区间 [kπ - 3π/8,kπ +π/8]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询