二重积分中,极坐标形式是怎么转化的?
1个回答
展开全部
二重积分经常把直角坐标转化为极坐标形式主要公式有x=ρcosθ y=ρsinθ x^2+y^2=ρ^2 dxdy=ρdρdθ;极点是原来直角坐标的原点以下是求ρ和θ范围的方法:
一般转换极坐标是因为有x^2+y^2存在,转换后计算方便题目中会给一个x,y的限定范围,一般是个圆将x=ρcosθ y=ρsinθ代进去可以得到一个关于ρ的等式;
就是ρ的最大值 而ρ的最小值一直是0过原点作该圆的切线,切线与x轴夹角为θ范围如:x^2+y^2=2x 所以(ρcosθ)^2+(ρsinθ)^2=2ρcosθ ρ=2cosθ ;此时0≤ρ≤2cosθ 切线为x=0 所以 -2/π≤θ≤2/π
扩展资料:
在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。
为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D。
参考资料来源:百度百科-二重积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询