∫ 1/(1+e^x)dx怎么做

 我来答
京斯年0GZ
2022-07-19 · TA获得超过6344个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:88万
展开全部
1、第一类换元法
∫1/(1+e^x)dx=∫e^(-x)/(1+e^(-x))dx=-∫1/(1+e^(-x))d(1+e^(-x))=-ln(1+e^(-x))+C=-ln((1+e^x)/e^x)+C=x-ln(1+e^x)+C

∫1/(1+e^x)dx=∫ [1 - e^x/(1+e^x))dx=x-∫1/(1+e^x)d(1+e^x)=x-ln(1+e^x)+C
2、第二类换元法
令t=e^x,则x=lnt,dx=dt/t
∫1/(1+e^x)dx=∫1/(t(1+t))dt=∫ (1/t-1/(t+1))dt=ln|t| - ln|1+t|+C=x-ln(1+e^x)+C
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式