证明:对任意正整数n(n+1)(n+2)(n+3)+1都是这个完全平方数

 我来答
新科技17
2022-08-11 · TA获得超过5912个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75.5万
展开全部
n(n+1)(n+2)(n+3)+1
=[n(n+3)][(n+1)(n+2)]+1
=(n^2+3n)[(n^2+3n)+2]+1
=(n^2+3n)^2+2(n^2+3n)+1
=(n^2+3n+1)^2
所以对任意正整数n(n+1)(n+2)(n+3)+1都是这个完全平方数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式