矩阵a可逆那么a的秩是多少
2个回答
展开全部
r(A,B)>=r(A+B)
r(A,B)>=r(B)>=r(AB)
r(AB)与r(A+B)没有直接关系。
矩阵B可逆,AB的秩等于A的秩,那么A可逆的充要条件是A可以写成初等阵的乘积。AB等于B左乘初等矩阵,而左乘初等阵就是对B进行初等行变换,所以它的秩不变。而B可逆的充要条件是B可以写成初等阵的乘积,同理秩不变。
矩阵的秩
定理:矩阵的行秩,列秩,秩都相等。
定理:初等变换不改变矩阵的秩。
定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。
定理:矩阵的乘积的秩Rab<=min{Ra,Rb};
引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
以上内容参考:百度百科-矩阵的秩
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询