求极限 当x→1时 lim[ (x^m-1)/(x^n-1)] (m,n 是自然数)

 我来答
天罗网17
2022-08-24 · TA获得超过6162个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:71.8万
展开全部
【方法一:因式分解法】
分子 = (x-1)[x^(m-1) + x^(m-2) + x^(m-3) + .+ 1]
分母 = (x-1)[x^(n-1) + x^(n-2) + x^(n-3) + .+ 1]
(x^m - 1)/(x^n - 1)
= [x^(m-1) + x^(m-2) + x^(m-3) + .+ 1]/[x^(n-1) + x^(n-2) + x^(n-3) + .+ 1]
= 1×m/1×n
= m/n
【方法二:洛必达求导法】
当x→1时,(x^m-1)→0;(x^n-1)→0
属于 0/0 型不定式
分子的导数 = mx^(m-1) → m
分母的导数 = nx^(n-1) → n
所以,原极限 = m/n
用两个重要极限解答,并不合适.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式