2个回答
展开全部
首先求特解,取y*=cx带入得到
-cx -3cx = 2x, c=-1/2, y*=-x/2
考虑x^2 y'' -xy' -3y =0
考虑
(xy)' = y +xy'
(xy)'' = 2y' + xy''
x^2y'' -xy' -3y = x^2y'' +2xy' -3xy'-3y
=x(xy)'' -3(xy)' =0
令p=(xy)'
xdp/dx -3p =0, dp/p = 3dx/x
lnp = 3lnx +C
p = cx^3
(xy)' = cx^3
xy = c1x^4 +c2
y = c1x^3 +c2/x
所以最终解为c1x^3 +c2/x-x/2
-cx -3cx = 2x, c=-1/2, y*=-x/2
考虑x^2 y'' -xy' -3y =0
考虑
(xy)' = y +xy'
(xy)'' = 2y' + xy''
x^2y'' -xy' -3y = x^2y'' +2xy' -3xy'-3y
=x(xy)'' -3(xy)' =0
令p=(xy)'
xdp/dx -3p =0, dp/p = 3dx/x
lnp = 3lnx +C
p = cx^3
(xy)' = cx^3
xy = c1x^4 +c2
y = c1x^3 +c2/x
所以最终解为c1x^3 +c2/x-x/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询