有没有什么方法可以计算圆周率呢?
1个回答
2022-09-30
展开全部
1.算圆周率 【π】
2.计算圆的面积
这种极限观在我国古代的文献中就有记载,最著名的是《庄子·天下篇》中记载的惠施( 约前
370——约前 310) 的一段话:
“一尺之锤,日取其半,万世不竭.”
公元 3 世纪,中国数学家刘徽 ( 263 年左右) 成功地把极限思想应用于实践,其中最典型的方法就是在计算圆的面积时建立的“割 圆术”.由于刘徽所采用的圆的半径为1,这样圆的面积在数值上即等于圆周率,所以说刘微成功地 创立了科学的求圆周率的方法.
刘徽采用的具体做法是:在半径为一尺的圆内,作圆的内接正六边 形,然后逐渐倍增边数,依次算出内接正6 边形、正 12 边形、…、直至 6 ×2 192 边形的面积.
刘徽认为,割得越细,圆内接正多边形与圆面积之差越小,即“割之弥细,所失弥少.割之又割,以至
于不可割,则与圆和体,而无所失矣”.这就是割圆术所反映的朴素的极限思想.
2.计算圆的面积
这种极限观在我国古代的文献中就有记载,最著名的是《庄子·天下篇》中记载的惠施( 约前
370——约前 310) 的一段话:
“一尺之锤,日取其半,万世不竭.”
公元 3 世纪,中国数学家刘徽 ( 263 年左右) 成功地把极限思想应用于实践,其中最典型的方法就是在计算圆的面积时建立的“割 圆术”.由于刘徽所采用的圆的半径为1,这样圆的面积在数值上即等于圆周率,所以说刘微成功地 创立了科学的求圆周率的方法.
刘徽采用的具体做法是:在半径为一尺的圆内,作圆的内接正六边 形,然后逐渐倍增边数,依次算出内接正6 边形、正 12 边形、…、直至 6 ×2 192 边形的面积.
刘徽认为,割得越细,圆内接正多边形与圆面积之差越小,即“割之弥细,所失弥少.割之又割,以至
于不可割,则与圆和体,而无所失矣”.这就是割圆术所反映的朴素的极限思想.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
黄小姐
2023-05-24 广告
2023-05-24 广告
ATAGO爱拓成立于1940年,总部位于日本东京,拥有逾80年光学测量仪器的研究开发与生产制造经验,是专业的折光仪生产企业,其主要产品为折光仪及基于折光法原理测量多种物质浓度的衍生浓度计。020-38106065。...
点击进入详情页
本回答由黄小姐提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询