什么是k均值聚类算法?

 我来答
床前明月儿
高能答主

2022-09-12 · 探索生活中的另一种可能
床前明月儿
采纳数:101 获赞数:171953

向TA提问 私信TA
展开全部

适用条件:系统聚类法适于二维有序样品聚类的样品个数比较均匀。K均值聚类法适用于快速高效,特别是大量数据时使用。

两者区别如下:

一、指代不同

1、K均值聚类法:是一种迭代求解的聚类分析算法。

2、系统聚类法:又叫分层聚类法,聚类分析的一种方法。

二、步骤不同

1、K均值聚类法:步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。

2、系统聚类法:开始时把每个样品作为一类,然后把最靠近的样品(即距离最小的群品)首先聚为小类,再将已聚合的小类按其类间距离再合并,不断继续下去,最后把一切子类都聚合到一个大类。


三、目的不同

1、K均值聚类法:终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。

2、系统聚类法:是以距离为相似统计量时,确定新类与其他各类之间距离的方法,如最短距离法、最长距离法、中间距离法、重心法、群平均法、离差平方和法、欧氏距离等。


参考资料来源:百度百科-系统聚类法

参考资料来源:百度百科-K均值聚类算法

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式