在三角形ABC中,若acosB+bcosC+ccosA=bcosA+ccosB+acosC求三角形的形状?
1个回答
展开全部
在三角形ABC中,若acosB+bcosC+ccosA=bcosA+ccosB+acosC求三角形的形状?
方程变形为(a-c)cosB+(b-a)cosC+(c-b)cosA=0.因为cosA=cos[π-(B+C)]=-cos(B+C)=sinBsinC-cosBcosC,a=√[bb+cc-2bccosA]=√[bb+cc-2bc(sinBsinC-cosBcosC)],故上式变为(√[bb+cc-2bc(sinBsinC-cosBcosC)]-c)cosB+(b-√[bb+cc-2bc(sinBsinC-cosBcosC)])cosC+(c-b)(sinBsinC-cosBcosC)=0.
稍后.
方程变形为(a-c)cosB+(b-a)cosC+(c-b)cosA=0.因为cosA=cos[π-(B+C)]=-cos(B+C)=sinBsinC-cosBcosC,a=√[bb+cc-2bccosA]=√[bb+cc-2bc(sinBsinC-cosBcosC)],故上式变为(√[bb+cc-2bc(sinBsinC-cosBcosC)]-c)cosB+(b-√[bb+cc-2bc(sinBsinC-cosBcosC)])cosC+(c-b)(sinBsinC-cosBcosC)=0.
稍后.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询