y=2x²+5x+6/ x²+2x+3 定义域和值域
展开全部
y = (2x²+5x+6)/(x²+2x+3), 定义域是 R
y = (2x²+4x+6 + x )/(x²+2x+3) = 2 + x/(x²+2x+3)
y' = [(x²+2x+3) - x(2x+2)]/(x²+2x+3)^2 = (-x²+3)/(x²+2x+3)^2
得驻点 x =±√3,
y(√3) = (12+5√3)/(6+2√3) = (12+5√3)(3-√3)/12
= (21+3√3)/12 = (7+√3)/4,
y(-√3) = (12-5√3)/(6-2√3) = (12-5√3)(3+√3)/12
= (21-3√3)/12 = (7-√3)/4,
lim<x→∞>(2x²+5x+6)/(x²+2x+3) = 2
值域 (7-√3)/4 ≤ y ≤ (7+√3)/4
y = (2x²+4x+6 + x )/(x²+2x+3) = 2 + x/(x²+2x+3)
y' = [(x²+2x+3) - x(2x+2)]/(x²+2x+3)^2 = (-x²+3)/(x²+2x+3)^2
得驻点 x =±√3,
y(√3) = (12+5√3)/(6+2√3) = (12+5√3)(3-√3)/12
= (21+3√3)/12 = (7+√3)/4,
y(-√3) = (12-5√3)/(6-2√3) = (12-5√3)(3+√3)/12
= (21-3√3)/12 = (7-√3)/4,
lim<x→∞>(2x²+5x+6)/(x²+2x+3) = 2
值域 (7-√3)/4 ≤ y ≤ (7+√3)/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询