怎样判断线性无关?
1个回答
展开全部
判断特征向量线性无关的方法:
1、显式向量组
将向量按列向量构造矩阵A。
对A实施初等行变换, 将A化成行梯矩阵。
梯矩阵的非零行数即向量组的秩。
如果向量组的秩 < 向量组所含向量的个数,则向量组线性相关。
否则向量组线性无关。
2、隐式向量组
一般是设向量组的一个线性组合等于0。
若能推出其组合系数只能全是0,则向量组线性无关。
否则向量组线性相关。
例如:a1=(1,1,3,1),a2=(3,-1,2,4),a3=(2,2,7,-1)
解:令x(1,1,3,1)+y(3,-1,2,4)+z(2,2,7,-1)=(0,0,0,0),
有x+3y+2z=0,且x-y+2z=0,且3x+2y+7z=0,且x+4y-z=0。
这个方程组有且只有零解,即x=y=z=0,故线性无关。
扩展资料:
简单的相关性和无关性的判断:
1、整体线性无关,局部必线性无关。
2、向量个数大于向量维数,则此向量组线性相关。
3、若一向量组线性无关,即使每一向量都在同一位置处增加一分量,仍然线性无关。
4、若一向量组线性相关,即使每一向量都在同一位置处减去一分量,仍然线性相关。
参考资料来源:百度百科-线性无关
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询