决定系数的取值范围是什么?
决定系数,有的教材上翻译为判定系数,也称为拟合优度。是相关系数的平方。表示可根据自变量的变异来解释因变量的变异部分。
拟合优度越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高。观察点在回归直线附近越密集。
取值意思:
0 表示模型效果跟瞎猜差不多
1 表示模型拟合度较好(有可能会是过拟合,需要判定)
0~1 表示模型的好坏(针对同一批数据)
小于0则说明模型效果还不如瞎猜(说明数据直接就不存在线性关系)
扩展资料
表征依变数Y的变异中有多少百分比,可由控制的自变数X来解释.
相关系数(coefficient of correlation)的平方即为决定系数。它与相关系数的区别在于除掉|R|=0和1情况,
由于R2<R,可以防止对相关系数所表示的相关做夸张的解释。
决定系数:在Y的总平方和中,由X引起的平方和所占的比例,记为R2(R的平方)
决定系数的大小决定了相关的密切程度。
当R2越接近1时,表示相关的方程式参考价值越高;相反,越接近0时,表示参考价值越低。这是在一元回归分析中的情况。但从本质上说决定系数和回归系数没有关系,就像标准差和标准误差在本质上没有关系一样。
在多元回归分析中,决定系数是通径系数的平方。
表达式:R2=SSR/SST=1-SSE/SST
其中:SST=SSR+SSE,SST (total sum of squares)为总平方和,SSR (regression sum of squares)为回归平方和,SSE (error sum of squares) 为残差平方和。
参考资料来源:百度百科——决定系数
2021-01-25 广告