怎么证明可逆矩阵?

 我来答
老八趣谈数码科技
高能答主

2022-10-03 · 数码科技小能手,热爱回答数码科技小知识与技巧
老八趣谈数码科技
采纳数:2 获赞数:5891

向TA提问 私信TA
展开全部

若矩阵A的平方等于A,则矩阵A=0或矩阵A=E,此命题成立的条件是矩阵A或A-E可逆。

矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。

一般所说的伪逆是指摩尔-彭若斯广义逆,它是由E. H. Moore和Roger Penrose分别独立提出的。

可逆矩阵计算:

高斯消元法是最经典也是最广为人知的一种矩阵求逆方法,但是在现实应用中很少用到高斯消元法来进行矩阵的逆矩阵的求解。

高斯消元法有两个版本:行变换版本与列变换版本,在日常应用中行变换应用的更广泛。这两个基本原理都是相同的。高斯消元法先将矩阵A与单位矩阵I进行连接形成一个新的增广矩阵。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式