线性方程组的解有无穷多解吗?

 我来答
鲨鱼星小游戏
高粉答主

2022-12-21 · 最爱分享有趣的游戏日常!
鲨鱼星小游戏
采纳数:2708 获赞数:238407

向TA提问 私信TA
展开全部

无穷解的条件分别是Ax=0无非零解时,则A为满秩矩阵。

则Ax=b一定有解。

Ax=0有无穷多解时,则A一定不为满秩矩阵。

Ax=b的解得情况有无解和无穷多解。

无解:R(A)≠R(A|b)。

无穷解:R(A)等于R(A|b)。且不为满秩。

Ax=b无解时,可知Ax=0一定有无穷多解。

Ax=b 有唯一解时,可知A为满秩矩阵,则Ax=0只有零解。

齐次线性方程组,要么零解(R(A)=n),要么无穷解(R(A)<n)。

重要定理

1、每一个线性空间都有一个基。

2、对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。

3、矩阵非奇异(可逆)当且仅当它的行列式不为零。

4、矩阵非奇异当且仅当它代表的线性变换是个自同构。

5、矩阵半正定当且仅当它的每个特征值大于或等于零。

6、矩阵正定当且仅当它的每个特征值都大于零。

7、解线性方程组的克拉默法则。

8、判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式