X^2-y^2=xy,xy不等于0 求X^2y^-2+x^-2y^2
X^2-y^2=xy,xy不等于0 求X^2y^-2+x^-2y^2
X^2-y^2=xy
(X^2-y^2)^2=(xy)^2
X^4+y^4-2x^2y^2=x^2y^2
X^4+y^4=3x^2y^2
X^2y^-2+x^-2y^2
=X^2/y^2+y^2/x^2
=(X^4+y^4)/x^2y^2
=3x^2y^2/x^2y^2
=3
{2乘[(3根号2)+(2根号6)]}除以(2根号2)=?
{2*[(3根号2)+(2根号6)]}/(2根号2)
=[(3根号2)+(2根号6)]/(根号2)
=(3根号2)/(根号2)+(2根号6)/(根号2)
=3+2根号3
2Fe3++H2S=2Fe2++S↓+2H+
2Fe3+ +H2S = 2Fe2+ + S↓+2H+
只有这一个离子方程式,不能生成FeS,因为FeS能溶于稀硫酸。
a2·a3+(-a2)3-2a(a2)3-2[(a3)3÷a3]
a^2·a^3+(-a^2)^3-2a(a^2)^3-2[(a^3)^3÷a^3]
=a^5+(-a^6)-2a.a^6-2(a^9÷a^3)
=a^5-a^6-2a^7-2a^6
=a^5-3a^6-2a^7
计算:(a^2+b^2)^3*(a-b)^2*16(-a^2-b^2)^3*(b-a)^3
(a^2+b^2)^3*(a-b)^2*16(-a^2-b^2)^3*(b-a)^3
=16*(a^2+b^2)^3*(a-b)^2*[-(a^2+b^2)]^3*[-(a-b)]^3
=(a^2+b^2)^3*(a-b)^2*16(a^2+b^2)^3*(a-b)^3
=16*:(a^2+b^2)^6*(a-b)^5
分解因式:1) .(a^2+b^2-1)^2-4(a^2)(b^2)
1) .(a^2+b^2-1)^2-4(a^2)(b^2) =.(a^2+b^2-1)^2-(2ab) =(a+b+2ab-1)(a+b-2ab-1) =[(a+b)-1][(a-b)-1] =(a+b+1)(a+b-1)(a-b+1)(a-b-1) 2). 25(x+y)^2-16(x-y)^2 =[5(x+y)]-[4(x-y)] =(5x+5y+4x-4y)(5x+5y-4x+4y) =(9x+y)(x+9y) 3) x^2-6x+9-y^2 =(x-3)-y =(x+y-3)(x-y-3)
因式分解:a^2-b^2-c^2+2a-2bc+1
a²-b²-c²+2a-2bc+1
=(a²+2a+1)-(b²+2bc+c²)
=(a+1)²-(b+c)²
=[(a+1)+(b+c)][(a+1)-(b+c)]
=(a+1+b+c)(a+1-b-c)
分解因式:2a(x2+1)2-2ax2
2a(x 2 +1) 2 -2ax 2
=2a[(x 2 +1) 2 -x 2 ]
=2a(x 2 +x+1)(x 2 -x+1).
1²+2²+3²+......+100²=?
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
1²+2²+3²+···+n²=
公式:1²+2²+3²+....+N²=n(n+1)(2n+1)/6
证明:
给个算术的差量法求解:
我们知道 (m+1)^3 - m^3 = 3*m^2 + 3*m + 1,可以得到下列等式:
2^3 - 1^3 = 3*1^2 + 3*1 + 1
3^3 - 2^3 = 3*2^2 + 3*2 + 1
4^3 - 3^3 = 3*3^2 + 3*3 + 1
.........
(n+1)^3 - n^3 = 3.n^2 + 3*n + 1
以上式子相加得到
(n+1)^3 - 1 = 3*Sn + 3*n(n+1)/2 + n
其中Sn = 1^2 + 2^2 + 3^2 + ...... + n^2
化简整理得到:
Sn = n*(n + 1)*(2n + 1)/6