二项式定理怎么证明?

 我来答
青柠姑娘17
2022-09-19 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6544
采纳率:100%
帮助的人:37万
展开全部
n个(a+b)相乘,是从(a+b)中取一个字母a或b的积.所以(a+b)^n的展开式中每一项都是)a^k*b^(n-k)的形式.对于每一个a^k*b^(n-k),是由k个(a+b)选了a,(a的系数为n个中取k个的组合数(就是那个C右上角一个数,右下角一个数)).(n-k)个(a+b)选了b得到的(b的系数同理).由此得到二项式定理.
二项式系数之和:
2的n次方
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式