正定矩阵的定义是什么

 我来答
xiao1060503543
高粉答主

2022-11-29 · 说的都是干货,快来关注
知道小有建树答主
回答量:274
采纳率:82%
帮助的人:12.1万
展开全部

正定矩阵:是一种实对称矩阵。正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(或A的转置配差者)称为正定矩阵。在线性代数里,正定矩阵 (positive definite matrix) 有时会简称为正定阵。在双线性代数中,正定矩阵的性质类似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(复域中则对应埃尔米特正定双线性形式)。

正定矩阵

(1)庆租广义定义:设M是培薯n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT表示z的转置,就称M正定矩阵。

例如:B为n阶矩阵,E为单位矩阵,a为正实数。aE+B在a充分大时,aE+B为正定矩阵。(B必须为对称阵)

(2)狭义定义:一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。

对称正定矩阵

设,若,对任意的,都有,则称A为对称正定矩阵。

Hermite正定矩阵

设,若,对任意的,都有,则称A为Hermite正定矩阵。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式