已知数列{an}的首项是a1=1,前n项和为Sn,且S(n+1)=2Sn+3n+1?

 我来答
世纪网络17
2022-11-25 · TA获得超过5950个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:143万
展开全部
1、
S(n+1)=2Sn+3n+1
S(n+1)+3(n+1)+4=2Sn+6n+8=2(Sn+3n+4)
[S(n+1)+3(n+1)+4]/(Sn+3n+4)=2,为定值.
S1+3+4=a1+3+4=1+3+4=8
数列{Sn+3n+4}是以8为首项,2为公比的等比数列.
Sn+3n+4=8×2^(n-1)=4×2ⁿ
Sn=4×2ⁿ-3n-4
Sn-1=4×2^(n-1)-3(n-1)-4=2×2ⁿ-3n-1
an=Sn-Sn-1=4×2ⁿ-3n-4-2×2ⁿ+3n+1=2^(n+1)-3
n=1时,a1=4-3=1,同样满足.
bn=an+3=2^(n+1)-3+3=2^(n+1)
数列{bn}的通项公式为bn=2^(n+1)
2、
=log3(bn)=log3[2^(n+1)]=(n+1)log3(2)
(-1)/[(n+25)]
=[(n+1)log3(2)-1]/[(n+25)(n+1)log3(2)]
=log3[2^(n+1)/3]/log3(2^[(n+25)(n+1)])
2^(n+1)/3-2^[(n+25)(n+1)]
=2^(n+1)[1/3-2^(n+25)]
随n增大,2^(n+25)单调递增,1/3-2^(n+25)0且单调递增
2^(n+1)[1/3-2^(n+25)],3,已知数列{an}的首项是a1=1,前n项和为Sn,且S(n+1)=2Sn+3n+1
1)设bn=an+3,求bn通项公式2)设=log3bn,若存在常数k,使不等式k>=(-1)/[(n+25)]恒成立,求k的最小值
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式