计算:4/(1*3*5)+4/(3*5*7)+4/(5*7*9)+…4/(93*95*97)+4/(95*97*99)?
1个回答
展开全部
请注意到:
1/[n(n+2)(n+5)]
=(1/4){[(n+4)-n]/[n(n+2)(n+4)]}
=(1/4){1/[n(n+2)]-1/[(n+2)(n+4)]}.
于是:
原式
=[1/(1×3)-1/(3×5)]+[1/(3×5)-1/(5×7)]+···+[1/(95×67)-1/(97×99)]
=1/(1×3)-1/(97×99)
=1/3-1/[97×(100-1)]
=1/3-1/(9700-97)
=1/3-1/9603
=(3201-1)/9603
=3200/9603.,7,4/1*3*5+4/3*5*7+4/5*7*9+.+4/95*97*99 =(1/1*3-1/3*5)+(1/3*5-1/5*7)+(1/5*7-1/7*9)+.+(1/95*97-1/97*99),1,原式第n项={1/[n(n+2)]-1/[(n+2)(n+4)]}。
n=1___n代入原式,化简,销项得原式=1/(1×3)-1/(97×99)=3200/9603,1,
1/[n(n+2)(n+5)]
=(1/4){[(n+4)-n]/[n(n+2)(n+4)]}
=(1/4){1/[n(n+2)]-1/[(n+2)(n+4)]}.
于是:
原式
=[1/(1×3)-1/(3×5)]+[1/(3×5)-1/(5×7)]+···+[1/(95×67)-1/(97×99)]
=1/(1×3)-1/(97×99)
=1/3-1/[97×(100-1)]
=1/3-1/(9700-97)
=1/3-1/9603
=(3201-1)/9603
=3200/9603.,7,4/1*3*5+4/3*5*7+4/5*7*9+.+4/95*97*99 =(1/1*3-1/3*5)+(1/3*5-1/5*7)+(1/5*7-1/7*9)+.+(1/95*97-1/97*99),1,原式第n项={1/[n(n+2)]-1/[(n+2)(n+4)]}。
n=1___n代入原式,化简,销项得原式=1/(1×3)-1/(97×99)=3200/9603,1,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询