逆矩阵的化简方法有哪些啊?
展开全部
运用初等行变换法。具体如下:
将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=[A,I]对专B施行初等行变换,即对A与I进行属完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。
如求
的逆矩阵
故A可逆并且,由右一半可得逆矩阵A^-1=
扩展资料:
矩阵的应用:
在几何光学里,可以找到很多需要用到矩阵的地方。几何光学是一种忽略了光波波动性的近似理论,这理论的模型将光线视为几何射线。
采用近轴近似,假若光线与光轴之间的夹角很小,则透镜或反射元件对于光线的作用,可以表达为2×2矩阵与向量的乘积。这向量的两个分量是光线的几何性质(光线的斜率、光线跟光轴之间在主平面。
这矩阵称为光线传输矩阵,内中元素编码了光学元件的性质。对于折射,这矩阵又细分为两种:“折射矩阵”与“平移矩阵”。折射矩阵描述光线遇到透镜的折射行为。平移矩阵描述光线从一个主平面传播到另一个主平面的平移行为。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询